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Abstract. A deterministic mathematical model with educational campaigns and ARV (Anti 

Retro Viral) therapy as control variables are formulated and analyzed using optimal control 

theory (the Pontryagin’s Maximum Principle). We formulate the appropriate optimal control 

problem and investigate the necessary conditions for the disease control in order to determine 

the role of the asymptomatic stage and pre-AIDS stage of HIV infection and in the spread of 

HIV using of educational campaigns and antiretroviral therapy are used as the control items. 

The numerical simulation of both the systems i.e. with control and without control, shows that 

the combination of the two strategies helps to reduce a significant difference in the number of 

individuals in the asymptomatic stage of HIV infection, the number of individuals in pre-AIDS 

stage, and the number of individuals with full-blown AIDS. 

1.  Introduction 

Mathematical representation and analysis of infectious diseases have been central to infectious disease 

epidemiology. Mathematical models have been used to help understand the transmission dynamics of 

HIV infections. Sensitivity analysis allows to investigate how uncertainty in the input variables affect 

the model outputs and which input variables tend to drive variation in the outputs. Reference [1] assess 

qualitatively of the role of public health education program on HIV transmission dynamics. Reference 

[5, 10] presented modelling the effect of screening of unaware infective and treatment on the spread of 

HIV infection. The impact of educational campaign, screening and HIV therapy on the dynamics of 

spread of HIV has been investigated by  [5] and [7]  studied  sensitivity analysis of the parameters of 

an HIV/AIDS model with condom campaign and antiretroviral therapy. 

Other Modelling tool plays a big role in epidemiology by providing a concrete mechanism for 

understanding spreads of the disease and suggesting effective control measure [2, 4].  Optimal control 

theory is one area of mathematics that is used extensively in the control of the spread of infectious 

diseases [3, 4, 6, 8, 11]. Reference [3] used two examples to illustrate the concept of optimal control in 

two different diseases model (to find an optimal vaccination strategy and to determine a drug 

treatment strategy). 

Modelling tool plays a big role in epidemiology by providing a concrete mechanism for 

understanding spreads of the disease and suggesting effective control measure [2, 4, 12].  Optimal 

control theory is one area of mathematics that is used extensively in the control of the spread of 

infectious diseases [3, 4, 6, 8, 11]. Reference [3] used two examples to illustrate the concept of optimal 

control in two different diseases model (to find an optimal vaccination strategy and to determine a 

drug treatment strategy). 
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In this study the model in [7] by the inclusion of time dependent control parameters. We formulate 

an optimal control problem with our objective functional balances the effect of minimizing the number 

of individuals in the asymptomatic stage of HIV infection, the number of individuals in pre-AIDS 

stage, and the number of individuals with full-blown AIDS in the spread of HIV/AIDS and 

minimizing the cost of implementing the control. 

2.  Mathematical Model 

In this paper, we consider the HIV/AIDS model used in [7] by the inclusion of time dependent control 

(educational campaign (u1) and antiretroviral therapy (u2)).  We divided the sexually active population 

N(t) into six subpopulations, namely, susceptible individuals S(t), susceptible individuals who receive 

condom campaigns E(t), infected individuals in the asymptomatic stage of HIV infection I(t), infected 

individuals in pre-AIDS stage but not receiving antiretroviral therapy P(t), individuals with full-blown 

AIDS but not receiving antiretroviral therapy A(t), and pre-AIDS individuals who are receiving 

antiretroviral therapy T(t). The population dynamics is given by the following set of ordinary 

differential equations: 
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Since the model monitors changes in the human population, the variables and the parameters are 

assumed to be positive for all t ≥ 0.  We  can  shows that all feasible solutions are uniformly bounded 
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The effective reproduction number shows the average number of new infections caused by a single 

HIV infected individual in a population which educational campaign and therapy programs is used to 

control strategies.  

3.  Analysis of Optimal Control 

We apply control theory as a mathematical tool to make decision involving complex biological 

situations ([2]). To investigate the optimal level of efforts that would be needed to control the disease, 
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the control  educational campaign (u1) and antiretroviral therapy (u2) are minimized subject to the 

system of equations (1) and formulate the objective functional as 
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and,,, wwwww  are the relative weights and help to balance each term in the integrand so 

that any of the terms do not dominate.  tf  is the final time. Our aim is to minimize the objective 

function )( 21 u,uJ given in  (5) so that infected individuals in the asymptomatic stage I(t), infected 

individuals in pre-AIDS stage P(t), infected individuals with full-blown AIDS A(t), and the cost of 
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The necessary conditions that an optimal control problem must satisfy come from Pontryagin’s 

Maximum Principle [9]. This principle converts the system of equations (1) and (5) into a problem of 

minimizing point-wise a Hamiltonian H, with respect to 
21  and uu as  
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4.  Numerical Results 

In this section, we simulated our model (1) are carried out using the set of parameters values given in 

Table 1.  

Table 1.  Parameter values for the model 

Parameter Values  Sources 

1
  0.86 [10] 

2
  0.5 Estimated 

1
  0.198 [11] 

2
  0.4621 [11] 

  0.0001 [10] 

  0.615 Estimated 
  0.0196 [11] 

        0.0909         [              [11] 

1
u  [0, 1] Estimated 

2
u  [0, 1] Estimated 

  700 Estimated 
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Assume the weights at final time are being kept fixed as, 

1000  and200501010 54321  ww,w,w,w                                (12) 

and the initial conditions is below  

20000  and 500002500000002000000000250 21  )(A)(T,)(I,.)(I,..)(S                   (13) 

to illustrate the effect of different optimal control strategies on the spread of HIV/AIDS in a 

population. Using model parameter values shown in Table 1 is obtained the effective reproduction 

numbers , ..Re 7461  Because ,Re 1  the HIV/AIDS infection still exists within the population. 

The results in Figure 1(a)-(c) show a significant difference  in the numbers of HIV-positive 

individuals in the asymptomatic stage of HIV infection (I),  the number of HIV-positive individuals in 

pre-AIDS stage but not receiving antiretroviral therapy (P), and the number of individuals with full-

blown AIDS but not receiving antiretroviral therapy (A), with optimal strategy compared to the 

numbers in the case without control.  

  

 

Figure 1.  The effect of educational campaigns control (u1) and antiretroviral therapy (u2) on  

the spread of HIV/AIDS 

  

The control profile of the combination of the two kinds of the control strategies is shown in Figure 

2. The control of educational campaigns u1 is at the upper bound before dropped slowly to the lower 

bound in the final time (tf=10) while the antiretroviral therapy control u2 is at the upper bound then 

decreases gradually to zero at the final time.           

 

Figure 2. The optimal control profiles of u1 and u2 

5.  Conclusion 

In paper, a deterministic model for assess effect of educational campaign on susceptible and 

antiretroviral therapy on pre-AIDS infections. We proved the existence and uniqueness of the optimal 

control and characterized the controls using Pontryagin’s Maximum Principle. The numerical 

simulation of both the systems i.e. with control and without control, shows that the combination of the 

two strategies helps to reduce a significant difference in the number of infected individuals in the 
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asymptomatic stage of HIV infection, the number of individuals in pre-AIDS stage, and the number of 

individuals with full-blown AIDS. 
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